Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cancer ; 194: 113347, 2023 11.
Article in English | MEDLINE | ID: mdl-37832507

ABSTRACT

Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive/methods , Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Tumor Microenvironment
2.
Cytotherapy ; 25(1): 46-58, 2023 01.
Article in English | MEDLINE | ID: mdl-36396552

ABSTRACT

BACKGROUND AIMS: The targeting of solid cancers with chimeric antigen receptor (CAR) T cells faces many technological hurdles, including selection of optimal target antigens. Promising pre-clinical and clinical data of CAR T-cell activity have emerged from targeting surface antigens such as GD2 and B7H3 in childhood cancer neuroblastoma. Anaplastic lymphoma kinase (ALK) is expressed in a majority of neuroblastomas at low antigen density but is largely absent from healthy tissues. METHODS: To explore an alternate target antigen for neuroblastoma CAR T-cell therapy, the authors generated and screened a single-chain variable fragment library targeting ALK extracellular domain to make a panel of new anti-ALK CAR T-cell constructs. RESULTS: A lead novel CAR T-cell construct was capable of specific cytotoxicity against neuroblastoma cells expressing low levels of ALK, but with only weak cytokine and proliferative T-cell responses. To explore strategies for amplifying ALK CAR T cells, the authors generated a co-CAR approach in which T cells received signal 1 from a first-generation ALK construct and signal 2 from anti-B7H3 or GD2 chimeric co-stimulatory receptors. The co-CAR approach successfully demonstrated the ability to avoid targeting single-antigen-positive targets as a strategy for mitigating on-target off-tumor toxicity. CONCLUSIONS: These data provide further proof of concept for ALK as a neuroblastoma CAR T-cell target.


Subject(s)
Neuroblastoma , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Gangliosides , Neuroblastoma/genetics , Neuroblastoma/therapy , T-Lymphocytes , Immunotherapy, Adoptive , Antibodies , Logic
3.
Mol Ther Oncolytics ; 26: 429-443, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36159778

ABSTRACT

B7-H3 (CD276) has emerged as a target for cancer immunotherapy by virtue of consistent expression in many malignancies, relative absence from healthy tissues, and an emerging role as a driver of tumor immune inhibition. Recent studies have reported B7-H3 to be a suitable target for chimeric antigen receptor-modified T cell (CAR-T) therapy using CARs constructed from established anti-B7-H3 antibodies converted into single-chain Fv format (scFv). We constructed and screened binders in an scFv library to generate a new anti-B7-H3 CAR-T with favorable properties. This allowed access to numerous specificities ready formatted for CAR evaluation. Selected anti-human B7-H3 scFvs were readily cloned into CAR-T and evaluated for anti-tumor reactivity in cytotoxicity, cytokine, and proliferation assays. Two binders with divergent complementarity determining regions were found to show optimal antigen-specific cytotoxicity and cytokine secretion. One binder in second-generation CD28-CD3ζ CAR format induced sustained in vitro proliferation on repeat antigen challenge. The lead candidate CAR-T also demonstrated in vivo activity in a resistant neuroblastoma model. An empirical approach to B7-H3 CAR-T discovery through screening of novel scFv sequences in CAR-T format has led to the identification of a new construct with sustained proliferative capacity warranting further evaluation.

4.
Mol Neurobiol ; 56(1): 702-710, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29790085

ABSTRACT

Glutamate is the principal excitatory neurotransmitter in the central nervous system. In mature brains, it is critically involved in neuroplasticity and, at high levels, neurotoxicity. The concentrations of glutamate in the extracellular space are maintained at low physiological levels by molecular glutamate transporters (excitatory amino acid transporters-EAATs). Adverse childhood experiences (ACEs) are highly reported in bipolar disorder (BD) and interact with the glutamatergic system in the brain. The aim of the study is to investigate the effect of a glutamate transporter polymorphism EAAT2-181A > C (rs4354668) and exposure to ACE on white matter microstructure in patients with BD. We assessed 175 bipolar subjects using diffusion tensor imaging, Risky Families Questionnaire, and EEAT2 rs4354668 variants. We observed an interaction between ACE and rs4354668: carriers of the G allele showed lower axial diffusivity compared to T/T homozygotes when exposed to high stress and higher axial diffusivity than T/T when exposed to low stress. Since the mutant G allele has been associated with a reduced transcriptional activity and expression of the transporter protein, and early stress is associated with a reduced expression of the EAAT2, we could hypothesize that after exposure to high levels of ACE G/G homozygotes are more vulnerable to stress reporting the highest damage as a consequence of an excess of free glutamate.


Subject(s)
Adverse Childhood Experiences , Bipolar Disorder/genetics , Excitatory Amino Acid Transporter 1/genetics , Polymorphism, Single Nucleotide/genetics , White Matter/pathology , Bipolar Disorder/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , White Matter/diagnostic imaging
5.
J Mol Neurosci ; 65(4): 536-545, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30073554

ABSTRACT

Bipolar disorder (BD) is a severe illness characterized by recurrent depressive and manic episodes and by emotional dysregulation. Altered cortico-limbic connectivity could account for typical symptoms of the disorder such as mood instability, emotional dysregulation, and cognitive deficits. Functional connectivity positively associated with glutamatergic neurotransmission. The inactivation of glutamate is handled by a series of glutamate transporters, among them, the excitatory amino acid transporter 1 (EAAT1) which is modulated by a SNP rs2731880 (C/T) where the C allele leads to increased EAAT1 expression and glutamate uptake. We hypothesized that rs2731880 would affect cortico-limbic functional connectivity during an implicit affective processing task. Sixty-eight BD patients underwent fMRI scanning during implicit processing of fearful and angry faces. We explored the effect of rs2731880 on the strength of functional connectivity from the amygdalae to the whole brain. A significant activation in response to emotional processing was observed in two main clusters encompassing the right and left amygdala. Amygdalae to whole-brain functional connectivity analyses revealed a significant interaction between rs2731880 and the task (emotional stimuli vs geometric shapes) for the functional connections between the right amygdala and right subgenual anterior cingulate cortex. Post-hoc analyses revealed that T/T patients showed a significant negative connectivity between the amygdala and anterior cingulate cortex compared to C carriers. T/T subjects also performed significantly better in the face-matching task than rs2731880*C carriers. Our findings reveal an EAAT1 genotype-associated difference in cortico-limbic connectivity during affective regulation, possibly identifying a neurobiological underpinning of emotional dysfunction in BD.


Subject(s)
Amygdala/diagnostic imaging , Bipolar Disorder/genetics , Connectome , Excitatory Amino Acid Transporter 1/genetics , Polymorphism, Single Nucleotide , Adult , Amygdala/physiopathology , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/physiopathology , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
6.
Article in English | MEDLINE | ID: mdl-29079138

ABSTRACT

BACKGROUND: The Homer family of postsynaptic scaffolding proteins plays a crucial role in glutamate-mediated synaptic plasticity, a phenotype associated with Bipolar Disorder (BD). Homer is a target for antidepressants and mood stabilizers. The AA risk genotype of the Homer rs7713917 A>G SNP has been associated with mood disorders and suicide, and in healthy humans with brain function. Despite the evidence linking Homer 1 gene and function to mood disorder, as well as its involvement in animal models of depression, no study has yet investigated the role of Homer in bipolar depression and treatment response. METHODS: We studied 199 inpatients, affected by a major depressive episode in course of BD. 147 patients were studied with structural MRI of grey and white matter, and 50 with BOLD functional MRI of emotional processing. 158 patients were treated with combined total sleep deprivation and light therapy. RESULTS: At neuroimaging, patients with the AA genotype showed lower grey matter volumes in medial prefrontal cortex, higher BOLD fMRI neural responses to emotional stimuli in anterior cingulate cortex, and lower fractional anisotropy in bilateral frontal WM tracts. Lithium treatment increased axial diffusivity more in AA patients than in G*carriers. At clinical evaluation, the same AA homozygotes showed a worse antidepressant response to combined SD and LT. CONCLUSIONS: rs7713917 influenced brain grey and white matter structure and function in BD, long term effects of lithium on white matter structure, and antidepressant response to chronotherapeutics, thus suggesting that glutamatergic neuroplasticity and Homer 1 function might play a role in BD psychopathology and response to treatment.


Subject(s)
Antidepressive Agents/therapeutic use , Bipolar Disorder/genetics , Bipolar Disorder/therapy , Brain/drug effects , Homer Scaffolding Proteins/genetics , Lithium Compounds/therapeutic use , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Brain Mapping , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/physiopathology , Diffusion Tensor Imaging , Emotions/drug effects , Emotions/physiology , Female , Genetic Variation , Gray Matter/diagnostic imaging , Gray Matter/drug effects , Gray Matter/physiopathology , Humans , Male , Middle Aged , Multimodal Imaging , Neuropsychological Tests , Oxygen/blood , Phototherapy , Sleep Deprivation , Treatment Outcome , White Matter/diagnostic imaging , White Matter/drug effects , White Matter/pathology , White Matter/physiopathology , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...